
NOTATION 

Here r is the microparticle radius; p, microparticle density; V, velocity; F~, force due to electric field; q, 

charge; E, electric field strength; g, acceleration due to gravity; Fg, gravitational force; m, microparticle mass; F c, drag 
force of medium; r/, viscosity of medium; Fn, nonsteady term in equation of motion; s, drag force of medium per unit 
velocity; rp, time constant of particle; r, time of free flight; qM, maximum charge; e, %, dielectric permittivity; x, 
coordinate; f, distribution function; d, interelectrode distance; sign, sign function; 5, delta function; n, concentration; 
�9 , intensity of scattering flux; 8, scattering cross section; t, time; h, norm; N M, number of interparticle collisions; N e, 
number of collisions with electrodes; N o, total number of collision; n, scatterer concentration; V, relative velocity; l, 
free path length;/~o,s, chemical potential; Co,s, potential energy; U, potential difference; J, current density; 7, surface 
concentration. 
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PULSATIONAL CHARACTERISTICS OF THE MODEL OF MASS FLOW 

IN A FLOW-THROUGH REACTOR 

M. I. II'in UDC 66.023,001.57 

Liquid f low  in a f low-through reactor and one-dimensional longitudinal turbulent mass transfer i s  

considered. The turbulent mass f l ux  is described by a second-order di f ferential  equation including the 

velocity and spatial scale o f  the turbulent pulsations. Conditions o f  pulsed tracer introduction in the  

reactor are considered, and the inverse problem for experimental determination o f  the pulsational 

characteristics is solved by the moment method. 

In [1, 2], an inhomogeneous differential equation was obtained for the isotropic one-dimensional turbulent or 
molecular mass (heat) transfer 

12 02q [2 02q 2l Oq OC 
. . . .  q = ul ~ (1) Ox 2 u z O~ z u Ox Ox ' 

which includes the spatial scale l and velocity u of the pulsations. 

The model in Eq. (1) differs from those in [3, 4] in that the spatial scale and second derivative of the flux with 
respect to the coordinate are individually present. This permits the formulation of a boundary problem for the flux q 
which more correctly reflects the physical picture at the boundaries (walls) of the reactor. The steady (quasi-steady at 
large u) model 
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iz OZq OC 
-Ox---- T - -  q = ul - -  (2) Ox 

like the model in Eq. (1) but in contrast to classical gradient laws, ensures finiteness of the flux at high values of the 
concentration gradients, and may be used to model processes with intense mass transfer or a high rate of chemical 

reaction [2]. 
The practical application of Eqs. (1) and (2) for modeling mass transfer in a specific type of reactor entails 

knowing numerical values of the parameters 1 and u and also their dependence on the operating conditions of the 
reactor (for example, on the rotation frequency of the mixing unit) and the physical properties of the medium. In the 
present work, a method of determining these parameters is considered for the case of a homogeneous flow-through 

reactor. The material-balance equation is 

_ OC Oq OC u~ (3) 
O ~  " Ox Ox 

and the corresponding boundary condition at the reactor input is 

C(0, %) : Cin (4) 

Consider the case most often encountered in practice, in which the walls at the reactor input and output are 

impermeable to the flux q. The boundary conditions for Eq. (1) are 

q (0, 't) = q (L, "~) = 0. (5) 

Suppose that the tracer concentration in the reactor initially is zero, and that it is fed to the reactor input in pulsed 

fashion. In this case 

C (x, O) .... O; (-;'in : 6~ (~.); q (x, O) :-=- aq (x, o) = o. (6) 

The conditions in Eq. (6) are typical in investigating the hydrodynamic structure in f low-through equipment [5]. 

Introducing the dimensionless variables and parameters Y = x / L ,  T = r/~ = Uxr /L/  C" -- C/C*;  Q = q/uC*; M = L / l ;  

= Ux/U, Eqs. (1), (3), and (4)-(6) may be written in the form 

ac '  i aQ ac '  . (7) 

OT 6 8 X  8 X  

8~Q ~2 O2Q 28M c)Q _ M ~ Q  M OC' 
. . . .  ; (8) 8 X  2 8T  ~ 8T 8X  

Q(O, T ) = Q ( 1 ,  T ) = 0 ;  

C'(0, T ) =  _1 6+(T); C'(X, 0 ) = 0 ;  (9) 
% 

q (x ,  o) .... aQ (x ,  o) ._ o. 
oT  (lO) 

The variation in tracer concentration at a definite point of the reactor, for example, at the output, is measured 
experimentally, and the parameters M and 6 may be found if  the inverse problem is solved. For its solution, the 

following central moments are introduced 

~t~(X) ~ y  C' (X, T)(T--  li ~ dT; (11) 
0 

Q, (X) = S Q ( x ,  T)(T - - . l )  ~ dT (i == 2, 3), (12) 
0 . . . . .  
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related to the dimensional moments 

a~ (x) ~ i C' (x, ~)(g -- x) ~ d~; (13) 
0 

Q~ (x) : Q (x, ~)(~ - -  ~)~ & ( 1 4 )  
0 

as follows 

"c - i + 1  

~ =(~) ~ ;  Q~ =(~)"~Q~' 05)  

The mean residence time is 
ec,  

= j" C (L, ~) ~d'~. 
o (16) 

Applying the integral transformations in Eqs. (11) and (12) to the system in Eqs., (7)-(10), the following 
problem is obtained for finding #i and Qi 

dZQ____L + M dQ~ MaQi = iMhs_l (X)  + ;(i .... 1) 6zQ~_2 ..... 2i6MQi.t;  (17) 
dX "~ 6 dX  

tti(X)-- ( - - t /  Qr x 
- -  6 + i S ~i-~ (X) dX; 

0 

(18) 

Q, (o )  = Q~ (1) - o. (19) 

For quasi -s teady Eq. (2) 

dZQi M dQ~ 
dX - - - T  + 5 dX MZQi = iM~i_l (X). (20) 

Omitting the cumbersome solution of Eqs. (17)-(20), the final expressions for the dimensionless central moments of 
second and third order calculated at the reactor output with x = L are given here 

[5,z --- 2 + 2K_____.~_~ [1 --exp ()h)I; 
M6 (M6)2 

~ s - - 6  ! 1 K(l__.2a) t (2I) Mz5 - ~ - + 2 r ( 1 - - a +  a~) + 
. 5 

+ 6= [1-- exp ~[ K (F - -  M z 1/5) +-~MSP(1--2a)-+ 

1 F 

o 

(22) 

where 

M M 
)~ = - ~ - ( K -  1), G - (K + 1); 

25 

K = ] / 1  +46z; ~ =  1--exp(k2) 
exp (s - -  exp (k=) 

(23) 
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i~ ~- II/6 + 26 for the nonsteady model in Eq. (I), 
{I/6 __for the quasi-steady model in Eq. (2); 

(24) 
1~ - ~to(L) ~ ( L )  

Note that the moments/~o and #z calculated when x = L do not give any information on the parameters M and 

6. It is evident from Eq. (23) that, when 6 < 0.1 (u >> Ux), r is practically independent of the choice of Eq. (1) or Eq. 
(2). This situation is characteristic for equipment with intense mechanical mixing, and in this case the use of the 
simpler Eq. (2) is justified. 

When 6 > 0.1-0.2, the use of the quasi-steady model in the given nonsteady process is not justified. This is 
characteristic, for example, of the turbulent flow of liquid or gas in hollow reactors where u = (0. l-0.2)u x. Equation 
(21) does not include F, i.e., the expression for the second moment does not depend on whether Eq. (1) or Eq. (2) is 
used. Generalizing the approach to obtaining Eqs. (21) and (22), it may be concluded that the moment /~2 is 
"insensitive" to the terms (19/uS)aSq/Or 2 and (2l/u)dq/ar in Eq. (1); the moment f13 is "insensitive" to the term 
(12/u~)aZq/arS; the fourth-order moment is "sensitive" to all the terms in Eq. (I). 

Thus, the parameters 6 and M may be determined using the two algebraic Eqs. (21) and (22), which may be 
solved numerically. Numerical values of fl2 and fls are obtained on the basis of the experimental differential 
distribution function C(L, r) of the tracer residence time in the reactor and the application of numerical integration 
to Eqs. (13) and (16). 

Note, in conclusion, that at large u (6 ---, 0) and finite M, it follows from Eqs. (21) and (22) that 

2 2 
[B2 ~ - -  [1 - -  exp (--MS)]; 

M~ (M~) 2 

~ 1211 +exp(--MS)] _ 24 [1--- exp (--MS)] (25) 

(MS) 2 (MS) 3 

If 346 = (L/l)(ux/U) = uxL/D is regarded as the Peclet number, Eq. (25) will coincide with the well-known 
equations for the diffusional model [5]. 

CONCLUSION 

For the most widespread experimental method of investigating the hydrodynamic structure of the flow in 
flow-through reactors -- i.e., the pulsed introduction of tracer at the reactor input and the recording of the 
differential distribution of the residence time (DFRT) -- theoretical expressions are obtained for the second and third 
central moments of the DFRT within the framework of the model of turbulent mass flow described by the second- 
order Eq. (1), the parameters of which are the pulsation velocity and the spatial scale of the pulsations. 

NOTATION 

Here r is time, sec; x, coordinate, m; C, Cin, current tracer concentration and concentration at the reactor 
input, kg/mS; C*, concentration scale, kg/m3; u, mean pulsation rate, m/see; l, spatial scale of pulsations, m; q, mass 

flux, kg/mS.sec; L, reactor length, m; u X, velocity of translational motion, m/see. 
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